Saad Yalouz

Laboratoire de Chimie Quantique de Strasbourg

Chargé de recherche CNRS Laboratoire de Chimie Quantique de Strasbourg

- **I) From quantum computing to chemistry**
- **II) Electronic structure on a Quantum Computer**
	-
	-

III) Near Term Era: VQE IV) Fault Tolerant Era: QPE

I) From quantum computing to quantum chemistry

Quantum Computing

Machine Learning

I) From quantum computing to quantum chemistry

Financial Modelling

Machine Learning

Complex physical systems

Condensed matter physics

Quantum chemistry

From quantum computing to quantum chemistry

Financial Modelling

-Richard P. Feynman

"Nature (e.g. atoms, molecules …) isn't classical and if you want to make a simulation of nature, you'd better make it quantum mechanical."

-Richard P. Feynman

"Nature (e.g. atoms, molecules …) isn't classical and if you want to make a simulation of nature, you'd better make it quantum mechanical."

-Richard P. Feynman

"Nature (e.g. atoms, molecules …) isn't classical and if you want to make a simulation of nature, you'd better make it quantum mechanical."

Classical Computer

Quantum Computer

How to encode/manipulate information in Qubits vs. Bits

ANSWER

How to encode/manipulate information in Qubits vs. Bits

ANSWER

How to encode/manipulate information in Qubits vs. Bits

ANSWER

How to encode/manipulate information in Qubits vs. Bits

From quantum computing to quantum chemistry

ANSWER

How to encode/manipulate information in Qubits vs. Bits

How to encode/manipulate information in Qubits vs. Bits

I) From quantum computing to quantum chemistry

Exemple of Full Quantum Superposition

Let's build a quantum circuit !

$H|\Psi_k\rangle = E_k|\Psi_k\rangle$ ̂

9

Quantum Chemistry

$H|\Psi_k\rangle = E_k|\Psi_k\rangle$ ̂

9

dE dR

Nuclear Forces (Energy dervatives)

Potential Energy Surfaces

Stable Molecular Geometries

Quantum Chemistry

Electronic structure Hamiltonian (Born-Oppenheimer approximation)

$$
H = \sum_{pq}^{N_o} h_{pq} \sum_{\sigma}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}_{q\sigma} + \frac{1}{2} \sum_{pqrs}^{N_o} g_{pqrs} \sum_{\sigma,\tau}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}^{\dagger}_{r\tau} \hat{a}_{s\tau} \hat{a}_{q\sigma}
$$

Electronic structure Hamiltonian (Born-Oppenheimer approximation)

$$
h_{pq} = \int \phi_p^*(\mathbf{r}_i) \left(-\frac{1}{2} \nabla_{\mathbf{r}_i}^2 - \sum_{A=1}^{N_a} \frac{Z_A}{|\mathbf{r}_i - \mathbf{R}_A|} \right) \phi_q(\mathbf{r}_i) d\mathbf{r}_i
$$

$$
g_{pqrs} = \int \phi_p^*(\mathbf{r}_i) \phi_r^*(\mathbf{r}_j) \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \phi_q(\mathbf{r}_i) \phi_s(\mathbf{r}_j) d\mathbf{r}_i d\mathbf{r}_j
$$

With 1- and 2-electron integrals

Electronic structure Hamiltonian (Born-Oppenheimer approximation)

$$
H = \sum_{pq}^{N_o} h_{pq} \sum_{\sigma}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}_{q\sigma} + \frac{1}{2} \sum_{pqrs}^{N_o} g_{pqrs} \sum_{\sigma,\tau}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}^{\dagger}_{r\tau} \hat{a}_{s\tau} \hat{a}_{q\sigma}
$$

$$
h_{pq} = \int \phi_p^*(\mathbf{r}_i) \left(-\frac{1}{2} \nabla_{\mathbf{r}_i}^2 - \sum_{A=1}^{N_a} \frac{Z_A}{|\mathbf{r}_i - \mathbf{R}_A|} \right) \phi_q(\mathbf{r}_i) d\mathbf{r}_i
$$

$$
g_{pqrs} = \int \phi_p^*(\mathbf{r}_i) \phi_r^*(\mathbf{r}_j) \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \phi_q(\mathbf{r}_i) \phi_s(\mathbf{r}_j) d\mathbf{r}_i d\mathbf{r}_j
$$

 $H|\Psi_0\rangle = E_0 |\Psi_0\rangle$

With 1- and 2-electron integrals

Mean-Field Approach (Hartree-Fock**)**

Single Configuration Approximation

 $|\Psi_0\rangle \approx |\Phi_{HF}\rangle$

$$
H = \sum_{pq}^{N_o} h_{pq} \sum_{\sigma}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}_{q\sigma} + \frac{1}{2} \sum_{pqrs}^{N_o} g_{pqrs} \sum_{\sigma,\tau}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}^{\dagger}_{r\tau} \hat{a}_{s\tau} \hat{a}_{q\sigma}
$$

Electronic structure Hamiltonian (Born-Oppenheimer approximation)

$$
h_{pq} = \int \phi_p^*(\mathbf{r}_i) \left(-\frac{1}{2} \nabla_{\mathbf{r}_i}^2 - \sum_{A=1}^{N_a} \frac{Z_A}{|\mathbf{r}_i - \mathbf{R}_A|} \right) \phi_q(\mathbf{r}_i) d\mathbf{r}_i
$$

$$
g_{pqrs} = \int \phi_p^*(\mathbf{r}_i) \phi_r^*(\mathbf{r}_j) \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \phi_q(\mathbf{r}_i) \phi_s(\mathbf{r}_j) d\mathbf{r}_i d\mathbf{r}_j
$$

 $H|\Psi_0\rangle = E_0 |\Psi_0\rangle$

With 1- and 2-electron integrals

Mean-Field Approach (Hartree-Fock**)**

Single Configuration Approximation

 $|\Psi_0\rangle\approx|\Phi_{HF}\rangle$

$$
H = \sum_{pq}^{N_o} h_{pq} \sum_{\sigma}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}_{q\sigma} + \frac{1}{2} \sum_{pqrs}^{N_o} g_{pqrs} \sum_{\sigma,\tau}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}^{\dagger}_{r\tau} \hat{a}_{s\tau} \hat{a}_{q\sigma}
$$

Electronic structure Hamiltonian (Born-Oppenheimer approximation) *Molecular Orbitals*

$$
h_{pq} = \int \phi_p^*(\mathbf{r}_i) \left(-\frac{1}{2} \nabla_{\mathbf{r}_i}^2 - \sum_{A=1}^{N_a} \frac{Z_A}{|\mathbf{r}_i - \mathbf{R}_A|} \right) \phi_q(\mathbf{r}_i) d\mathbf{r}_i
$$

$$
g_{pqrs} = \int \phi_p^*(\mathbf{r}_i) \phi_r^*(\mathbf{r}_j) \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \phi_q(\mathbf{r}_i) \phi_s(\mathbf{r}_j) d\mathbf{r}_i d\mathbf{r}_j
$$

 $H|\Psi_0\rangle = E_0 |\Psi_0\rangle$

With 1- and 2-electron integrals
Mean-Field Approach (Hartree-Fock**)**

Single Configuration Approximation

 $|\Psi_0\rangle \approx |\Phi_{HF}\rangle$

Spin-Orbitals

Electronic structure Hamiltonian (Born-Oppenheimer approximation)

$$
H = \sum_{pq}^{N_o} h_{pq} \sum_{\sigma}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}_{q\sigma} + \frac{1}{2} \sum_{pqrs}^{N_o} g_{pqrs} \sum_{\sigma,\tau}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}^{\dagger}_{r\tau} \hat{a}_{s\tau} \hat{a}_{q\sigma}
$$

$$
h_{pq} = \int \phi_p^*(\mathbf{r}_i) \left(-\frac{1}{2} \nabla_{\mathbf{r}_i}^2 - \sum_{A=1}^{N_a} \frac{Z_A}{|\mathbf{r}_i - \mathbf{R}_A|} \right) \phi_q(\mathbf{r}_i) d\mathbf{r}_i
$$

$$
g_{pqrs} = \int \phi_p^*(\mathbf{r}_i) \phi_r^*(\mathbf{r}_j) \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \phi_q(\mathbf{r}_i) \phi_s(\mathbf{r}_j) d\mathbf{r}_i d\mathbf{r}_j
$$

 $H|\Psi_0\rangle = E_0 |\Psi_0\rangle$

With 1- and 2-electron integrals

Beyond Hartree-Fock: Full Configuration Interaction

Beyond Hartree-Fock: Full Configuration Interaction

$$
\frac{e^{-}}{2}
$$
\n
$$
|\Psi_{0}^{FCI}\rangle = C_{0} \frac{\cos A N}{\cos A}
$$
\n
$$
|H|\Psi_{0}\rangle = E_{0}|\Psi_{0}\rangle
$$
\n
$$
|\Psi_{0}^{FCI}\rangle = |H\Gamma\rangle = |1100\rangle
$$

Beyond Hartree-Fock: Full Configuration Interaction

$$
\frac{e^{-}}{2}
$$
\n
$$
|\Psi_{0}^{FCI}\rangle = C_{0} \frac{\cos A N}{\cos A}
$$
\n
$$
|H|\Psi_{0}\rangle = E_{0}|\Psi_{0}\rangle
$$
\n
$$
|\Psi_{0}^{FCI}\rangle = |H\Gamma\rangle = |1100\rangle
$$

Beyond Hartree-Fock: Full Configuration Interaction

$$
\frac{e^{-}}{2}
$$

\n
$$
|\Psi_{0}^{FCI}\rangle = C_{0} \frac{\cos A N}{\cos A}
$$

\n
$$
H|\Psi_{0}\rangle = E_{0}|\Psi_{0}\rangle
$$

\n
$$
|\Psi_{0}^{FCI}\rangle = \frac{C_{0} \cos A}{\cos A}
$$

Beyond Hartree-Fock: Full Configuration Interaction

Beyond Hartree-Fock: Full Configuration Interaction

Problem: *AND AND* FCI = Expensive! *β β α α* C_0 $\frac{C_0}{C_1}$ + C_1 $\frac{C_0}{C_2}$ + C_2 $\frac{C_0}{C_1}$... **Benzene** $N_{CONF} \sim 10^{19}$ *β β α α* CORE 19 |1001⟩ |0011⟩ HOW TO [|]1⟩ *AND AND* [|]0⟩ |1⟩ |0⟩ Connect |1⟩ |1⟩ |0⟩ |0⟩ C_0 $\frac{C_0}{C_1}$ $+ C_1$ $\frac{C_0}{C_1}$ $+ C_2$ $\frac{C_0}{C_1}$... Both Worlds? |1⟩ |1⟩ $=|0\rangle$ |0⟩ |1⟩ |1⟩ $|0\rangle$ |0⟩

-Richard P. Feynman

"Nature (e.g. atoms, molecules …) isn't classical and if you want to make a simulation of nature, you'd better make it quantum mechanical."

Jordan-Wigner Mapping (Fermion to qubit)

$$
\hat{O}^{\text{ferm.}} \longrightarrow \hat{O}^{\text{Qubits}} = \sum_{K} h_K \hat{\mathcal{P}}_K
$$

 $Pauli \, Strings \, \hat{\mathcal{P}}_K = Y_0 \otimes X_1 \otimes Z_2 \otimes \ldots$

What Possibilities ?

- We can express fermionic operators (products of $\hat{a}^{\dagger}/\hat{a}$) in Qubit algebra ̂

13

$$
\hat{O}^{\text{ferm.}} \longrightarrow \hat{O}^{\text{Qubits}} = \sum_{K} h_K \hat{\mathcal{P}}_K
$$

 $Pauli \, Strings \, \hat{\mathcal{P}}_K = Y_0 \otimes X_1 \otimes Z_2 \otimes \ldots$

What Possibilities ?

- We can express fermionic operators (products of $\hat{a}^{\dagger}/\hat{a}$) in Qubit algebra ̂

- We can measure these operators

$$
\langle \hat{O}^{\text{Qubits}} \rangle_{\text{YQubits}} = \sum_{K} h_K \langle \hat{\mathcal{P}}_K \rangle_{\text{YQubits}}
$$

13

$$
\hat{O}^{\text{ferm.}} \longrightarrow \hat{O}^{\text{Qubits}} = \sum_{K} h_K \hat{\mathcal{P}}_K
$$

 $Pauli \, Strings \, \hat{\mathcal{P}}_K = Y_0 \otimes X_1 \otimes Z_2 \otimes \ldots$

What Possibilities ?

- We can express fermionic operators (products of $\hat{a}^{\dagger}/\hat{a}$) in Qubit algebra ̂

- We can measure these operators

$$
\langle \hat{O}^{\text{Qubits}} \rangle_{\text{WQubits}} = \sum_{K} h_K \langle \hat{\mathcal{P}}_K \rangle_{\text{WQubits}}
$$

13

II) Electronic structure on a Quantum Computer

- We can encode fermionic unitaries in a quantum circuit

II) Electronic structure on a Quantum Computer

Jordan-Wigner mapping

II) Electronic structure on a Quantum Computer

Jordan-Wigner mapping

II) Electronic structure on a Quantum Computer

Jordan-Wigner mapping

^H *α* **^H** $\frac{H}{B}$ β H **^H** *α* **^H ^H** *β* **^H** [|]1⟩ |0⟩ |1⟩ |0⟩ |1⟩ |0⟩ |1⟩ |0⟩ *X X* Jordan-Wigner mapping

^H *α* **^H** $\frac{H}{B}$ β H **^H** *α* **^H ^H** *β* **^H** [|]1⟩ |0⟩ |1⟩ |0⟩ |1⟩ |0⟩ |1⟩ |0⟩ *X X* Jordan-Wigner mapping

III) Near Term Era: Variational Quantum Eigensolver

Emerging quantum computers are "NISQ" devices. (NISQ : Noisy Intermediate-Scale Quantum)

III) Near Term Era: Variational Quantum Eigensolver

Emerging quantum computers are "NISQ" devices. (NISQ : Noisy Intermediate-Scale Quantum)

III) Near Term Era: Variational Quantum Eigensolver

Only **a few stable qubits** accessible

 $N_{qubits}\thicksim 10$

Emerging quantum computers are "NISQ" devices.

(NISQ : Noisy Intermediate-Scale Quantum)

III) Near Term Era: Variational Quantum Eigensolver

Only **a few stable qubits** accessible

 $N_{qubits}\thicksim 10$

Emerging quantum computers are "NISQ" devices.

(NISQ : Noisy Intermediate-Scale Quantum)

Only **a few stable qubits** accessible

 $N_{qubits}\thicksim 10$

Emerging quantum computers are "NISQ" devices.

NISQ algorithms

- Based on **a few qubits and quantum gates.**
- Pretty resistant to the **noise effects**.
- *Exponentially* **fewer resources to store information**

VQE: Variational Quantum Eigensolver

$|\Psi(\theta)\rangle = U(\theta)|HF\rangle$ ̂ ⃗

18

Energy $E(\theta)$ ⃗

measure

VQE: Variational Quantum Eigensolver

Classical computer

$|\Psi(\theta)\rangle = U(\theta)|HF\rangle$ ̂ ⃗

18

VQE: Variational Quantum Eigensolver

VQE: Variational Quantum Eigensolver

VQE: Variational Quantum Eigensolver

Which ansatze? How do we build them?

Which ansatze? How do we build them?

Hardware-efficient ansatz

Which ansatze? How do we build them?

Hardware-efficient ansatz

Unitary Coupled Cluster ansatz

Which ansatze? How do we build them?

Hardware-efficient ansatz

Hardware-efficient ansatz **Kandala, Abhinav, et al.** "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets " Nature 549 7671 (2017): 242-246 small molecules and quantum magnets." *Nature* 549.7671 (2017): 242-246.

Hardware-efficient ansatz

Kandala, Abhinav, et al. "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets." *Nature* 549.7671 (2017): 242-246.

Hardware-efficient ansatz

Kandala, Abhinav, et al. "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets." *Nature* 549.7671 (2017): 242-246.

Hardware-efficient ansatz

Kandala, Abhinav, et al. "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets." *Nature* 549.7671 (2017): 242-246.

Hardware-efficient ansatz

small molecules and quantum magnets." *Nature* 549.7671 (2017): 242-246.

Unitary Coupled Cluster ansatz **Romero, Jonathan, et al.** "Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz." *Quantum Science and Technology* 4.1 (2018): 014008. the unitary coupled cluster ansatz." *Quantum Science and Technology* 4.1 (2018): 014008.

 $T(\theta) =$ ⃗ exc. op. ∑ *l* θ_l $\hat{\tau}_l$ ̂

21

Unitary Coupled Cluster ansatz **Romero, Jonathan, et al.** "Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz." *Quantum Science and Technology* 4.1 (2018): 014008. the unitary coupled cluster ansatz." *Quantum Science and Technology* 4.1 (2018): 014008.

 θ_l $\hat{\tau}_l$

 $\hat{a}^{\dagger}_{p}\hat{a}_{q}$ ̂

⃗

exc. op.

∑

l

̂

 $T(\theta) =$

̂

21

Unitary Coupled Cluster ansatz **Romero, Jonathan, et al.** "Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz." *Quantum Science and Technology* 4.1 (2018): 014008. the unitary coupled cluster ansatz." *Quantum Science and Technology* 4.1 (2018): 014008.

Unitary Coupled Cluster ansatz **Romero, Jonathan, et al.** "Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz." *Quantum Science and Technology* 4.1 (2018): 014008. the unitary coupled cluster ansatz." *Quantum Science and Technology* 4.1 (2018): 014008.

21

Unitary Coupled Cluster ansatz

Unitary Coupled Cluster ansatz

Romero, Jonathan, et al. "Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz." *Quantum Science and Technology* 4.1 (2018): 014008.

$$
\left\{\hat{U}(\vec{\theta})\Bigg| \Bigg| \approx \prod_{l}^{exc. op.} \prod_{k}^{dp_l \hat{\mathscr{P}}_k^{(l)}}\right\}
$$

Unitary Coupled Cluster ansatz

2) Use Jordan-Wigner to translate into qubit algebra

Romero, Jonathan, et al. "Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz." *Quantum Science and Technology* 4.1 (2018): 014008.

QUESTION Which *circuit* could encode this exponential of Pauli String? $e^{-i\theta Z_A X_B} = \cos(\theta)1 - i\sin(\theta)Z_A X_B$

 $\boxed{22}$

III) Near Term Era: Variational Quantum Eigensolver

$e^{-i\theta Z_A X_B} = \cos(\theta) \mathbf{1} - i \sin(\theta) Z_A X_B$ *QUESTION* **Which** *circuit* **could encode this exponential of Pauli String ?**

III) Near Term Era: Variational Quantum Eigensolver

III) Near Term Era: Variational Quantum Eigensolver

III) Near Term Era: Variational Quantum Eigensolver

IV) Fault Tolerant Era: Quantum Phase Estimation

$$
|\psi_{\omega}\rangle\left(\frac{\partial^{1}}{\partial x^{0}}\right) = \sum_{\omega}e^{-it\omega'}|\psi_{\omega}\rangle\langle\psi_{\omega'}|
$$

GOAL: we want to know *ω*

IV) Fault Tolerant Era: Quantum Phase Estimation

IV) Fault Tolerant Era: Quantum Phase Estimation

IV) Fault Tolerant Era: Quantum Phase Estimation

IV) Fault Tolerant Era: Quantum Phase Estimation

IV) Fault Tolerant Era: Quantum Phase Estimation

PhD and Postdoc Opportunities coming soon in 2025 !! **Quantum Algorithm for Quantum Chemistry**

$H\Psi_k = E_k \Psi_k$

Contact us: **syalouz@unistra.fr or yalouzsaad@gmail.com**

II) From quantum computing to chemistry

H

H

e−

35

Electronic Structure Problem

II) From quantum computing to chemistry

 $H =$

 $\left(-\frac{1}{2}\right)$

 $=$ \int $\phi_p^*(\mathbf{r}_i)$

No

∑

pq

 $\nabla^2_{\mathbf{r}_i}$ –

$$
h_{pq} \sum_{\sigma}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}_{q\sigma} + \frac{1}{2} \sum_{pqrs}^{N_o} g_{pqrs} \sum_{\sigma,\tau}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}^{\dagger}_{r\tau} \hat{a}_{s\tau} \hat{a}_{q\sigma} + E^{rep}_{nuc}
$$

$$
h_{pq} = \int \phi_p^*(\mathbf{r}_i) \left(-\frac{1}{2} \nabla_{\mathbf{r}_i}^2 - \sum_{A=1}^{N_a} \frac{Z_A}{|\mathbf{r}_i - \mathbf{R}_A|} \right) \phi_q(\mathbf{r}_i) d\mathbf{r}_i \qquad g_{pqrs} = \int \phi_p^*(\mathbf{r}_i) \phi_r^*(\mathbf{r}_j) \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \phi_q(\mathbf{r}_i) \phi_s(\mathbf{r}_j) d\mathbf{r}_i d\mathbf{r}_j
$$

H

Hartree-Fock calculation

Resolution: *Mean-Field Approach*

$$
|\phi_p\rangle = \sum_{\mu} C_{\mu p} |A O_{\mu}\rangle
$$
H

H

e−

e−

35

Electronic Structure Problem

II) From quantum computing to chemistry

 $H =$

 $\left(-\frac{1}{2}\right)$

 $=$ \int $\phi_p^*(\mathbf{r}_i)$

No

∑

pq

 $\nabla^2_{\mathbf{r}_i}$ –

$$
h_{pq} \sum_{\sigma}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}_{q\sigma} + \frac{1}{2} \sum_{pqrs}^{N_o} g_{pqrs} \sum_{\sigma,\tau}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}^{\dagger}_{r\tau} \hat{a}_{s\tau} \hat{a}_{q\sigma} + E^{rep}_{nuc}
$$

$$
h_{pq} = \int \phi_p^*(\mathbf{r}_i) \left(-\frac{1}{2} \nabla_{\mathbf{r}_i}^2 - \sum_{A=1}^{N_a} \frac{Z_A}{|\mathbf{r}_i - \mathbf{R}_A|} \right) \phi_q(\mathbf{r}_i) d\mathbf{r}_i \qquad g_{pqrs} = \int \phi_p^*(\mathbf{r}_i) \phi_r^*(\mathbf{r}_j) \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \phi_q(\mathbf{r}_i) \phi_s(\mathbf{r}_j) d\mathbf{r}_i d\mathbf{r}_j
$$

Hartree-Fock calculation

H

H

e−

e−

35

Electronic Structure Problem

II) From quantum computing to chemistry

 $H =$

 $\left(-\frac{1}{2}\right)$

 $=$ \int $\phi_p^*(\mathbf{r}_i)$

No

∑

pq

 $\nabla^2_{\mathbf{r}_i}$ –

$$
h_{pq} \sum_{\sigma}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}_{q\sigma} + \frac{1}{2} \sum_{pqrs}^{N_o} g_{pqrs} \sum_{\sigma,\tau}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}^{\dagger}_{r\tau} \hat{a}_{s\tau} \hat{a}_{q\sigma} + E^{rep}_{nuc}
$$

$$
h_{pq} = \int \phi_p^*(\mathbf{r}_i) \left(-\frac{1}{2} \nabla_{\mathbf{r}_i}^2 - \sum_{A=1}^{N_a} \frac{Z_A}{|\mathbf{r}_i - \mathbf{R}_A|} \right) \phi_q(\mathbf{r}_i) d\mathbf{r}_i \qquad g_{pqrs} = \int \phi_p^*(\mathbf{r}_i) \phi_r^*(\mathbf{r}_j) \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \phi_q(\mathbf{r}_i) \phi_s(\mathbf{r}_j) d\mathbf{r}_i d\mathbf{r}_j
$$

Hartree-Fock calculation

H

H

e−

e−

35

Electronic Structure Problem

II) From quantum computing to chemistry

 $H =$

 $\left(-\frac{1}{2}\right)$

 $=$ \int $\phi_p^*(\mathbf{r}_i)$

No

∑

pq

 $\nabla^2_{\mathbf{r}_i}$ –

$$
h_{pq} \sum_{\sigma}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}_{q\sigma} + \frac{1}{2} \sum_{pqrs}^{N_o} g_{pqrs} \sum_{\sigma,\tau}^{\{\uparrow,\downarrow\}} \hat{a}^{\dagger}_{p\sigma} \hat{a}^{\dagger}_{r\tau} \hat{a}_{s\tau} \hat{a}_{q\sigma} + E^{rep}_{nuc}
$$

$$
h_{pq} = \int \phi_p^*(\mathbf{r}_i) \left(-\frac{1}{2} \nabla_{\mathbf{r}_i}^2 - \sum_{A=1}^{N_a} \frac{Z_A}{|\mathbf{r}_i - \mathbf{R}_A|} \right) \phi_q(\mathbf{r}_i) d\mathbf{r}_i \qquad g_{pqrs} = \int \phi_p^*(\mathbf{r}_i) \phi_r^*(\mathbf{r}_j) \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \phi_q(\mathbf{r}_i) \phi_s(\mathbf{r}_j) d\mathbf{r}_i d\mathbf{r}_j
$$

Hartree-Fock calculation

 $H|\Psi_0\rangle = E_0 |\Psi_0\rangle$

Single Configuration $|\Psi_0\rangle \approx |HF\rangle$