
Quantum Chemistry          Quantum Computing 

Saad Yalouz
Chargé de recherche CNRS 

 Laboratoire de Chimie Quantique de Strasbourg

&



C1

2

Summary

I)   From quantum computing to chemistry 

II)  Electronic structure on a Quantum Computer 

III) Near Term Era: VQE 

IV) Fault Tolerant Era: QPE



I) From quantum computing to quantum chemistry



4

I) From quantum computing to quantum chemistry

Quantum  

Computing



4

Machine Learning 

I) From quantum computing to quantum chemistry

Quantum  

Computing



4

Machine Learning 

I) From quantum computing to quantum chemistry

Big Data

Quantum  

Computing



4

Machine Learning 

I) From quantum computing to quantum chemistry

|Ψ⟩

Cryptography

Big Data

Quantum  

Computing



4

Machine Learning 

I) From quantum computing to quantum chemistry

|Ψ⟩

Cryptography

Weather forecasting

Big Data

Quantum  

Computing



4

Machine Learning 

I) From quantum computing to quantum chemistry

|Ψ⟩

Cryptography

Weather forecasting

Big Data

|$⟩
|$⟩

|$⟩

|$⟩

|$⟩
|$⟩

|$⟩

|$⟩|$⟩

|$⟩ |$⟩
|$⟩

|$⟩

|$⟩

|$⟩

Financial Modelling

Quantum  

Computing



4

Machine Learning 

I) From quantum computing to quantum chemistry

Complex physical systems

Condensed  
matter  
physics

Quantum  
chemistry

|Ψ⟩

Cryptography

Weather forecasting

Big Data

|$⟩
|$⟩

|$⟩

|$⟩

|$⟩
|$⟩

|$⟩

|$⟩|$⟩

|$⟩ |$⟩
|$⟩

|$⟩

|$⟩

|$⟩

Financial Modelling

Quantum  

Computing



5

Quantum Computer

H
H

e−

e−

Quantum Chemistry

-Richard P. Feynman 
“Nature (e.g. atoms, molecules …) 

isn't classical and if you want to make 

a simulation of nature, you'd better 

make it quantum mechanical.”

I) From quantum computing to quantum chemistry



5

Quantum Computer

H
H

e−

e−

Quantum Chemistry

-Richard P. Feynman 
“Nature (e.g. atoms, molecules …) 

isn't classical and if you want to make 

a simulation of nature, you'd better 

make it quantum mechanical.”

I) From quantum computing to quantum chemistry



5

Quantum Computer

H
H

e−

e−

Quantum Chemistry

-Richard P. Feynman 
“Nature (e.g. atoms, molecules …) 

isn't classical and if you want to make 

a simulation of nature, you'd better 

make it quantum mechanical.”

Classical Computer

VS.VS.

I) From quantum computing to quantum chemistry



6

Classical Computer

Quantum Computer

VS.

I) From quantum computing to quantum chemistry



6

Classical Computer

Quantum Computer

Prog. LangageBasic LogicUnit of Information

VS.

I) From quantum computing to quantum chemistry



6

0
1

The BitClassical Computer

Quantum Computer

Prog. LangageBasic LogicUnit of Information

VS.

I) From quantum computing to quantum chemistry



6

Logical circuit

AND

XOR
BIT
BIT BIT

BIT

0
1

The BitClassical Computer

Quantum Computer

Prog. LangageBasic LogicUnit of Information

VS.

I) From quantum computing to quantum chemistry



6

Logical circuit

AND

XOR
BIT
BIT BIT

BIT

Fortran, C, Python …

0
1

The BitClassical Computer

Quantum Computer

Prog. LangageBasic LogicUnit of Information

VS.

I) From quantum computing to quantum chemistry



6

|Q⟩ = c0 |0⟩+c1 |1⟩

|1⟩
|0⟩

The Qubit

Logical circuit

AND

XOR
BIT
BIT BIT

BIT

Fortran, C, Python …

0
1

The BitClassical Computer

Quantum Computer

Prog. LangageBasic LogicUnit of Information

VS.

I) From quantum computing to quantum chemistry



6

|Q⟩ = c0 |0⟩+c1 |1⟩

|1⟩
|0⟩

The Qubit

Logical circuit

AND

XOR
BIT
BIT BIT

BIT

Fortran, C, Python …

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

X|1⟩
|0⟩

|1⟩
|0⟩ H

X

Quantum Circuit

0
1

The BitClassical Computer

Quantum Computer

Prog. LangageBasic LogicUnit of Information

VS.

I) From quantum computing to quantum chemistry



6

|Q⟩ = c0 |0⟩+c1 |1⟩

|1⟩
|0⟩

The Qubit

Logical circuit

AND

XOR
BIT
BIT BIT

BIT

Fortran, C, Python …

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

X|1⟩
|0⟩

|1⟩
|0⟩ H

X

Quantum Circuit

0
1

The BitClassical Computer

Quantum Computer

Prog. LangageBasic LogicUnit of Information

Quantum Physics ! 
(Unitary Transformations)

|1⟩
|0⟩

|1⟩
|0⟩ U

VS.

I) From quantum computing to quantum chemistry



6

|Q⟩ = c0 |0⟩+c1 |1⟩

|1⟩
|0⟩

The Qubit

Logical circuit

AND

XOR
BIT
BIT BIT

BIT

Fortran, C, Python …

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

X|1⟩
|0⟩

|1⟩
|0⟩ H

X

Quantum Circuit

0
1

The BitClassical Computer

Quantum Computer

Prog. LangageBasic LogicUnit of Information

Quantum Physics ! 
(Unitary Transformations)

|1⟩
|0⟩

|1⟩
|0⟩ U

VS.

Why a Quantum computer is more powerful than a classical one ?QUESTION

I) From quantum computing to quantum chemistry



7

How to encode/manipulate information in Qubits vs. Bits

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩
|1⟩
|0⟩

|1⟩
|0⟩

VS.

ANSWER

I) From quantum computing to quantum chemistry



7

1

1

0

0
OR …

1
0
0
1

OR0
0

1
1

How to encode/manipulate information in Qubits vs. Bits

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩
|1⟩
|0⟩

|1⟩
|0⟩

VS.

ANSWER

I) From quantum computing to quantum chemistry



7

1

1

0

0
OR …

1
0
0
1

OR0
0

1
1

How to encode/manipulate information in Qubits vs. Bits

Classical STATE  
= 1 bitstring at the time 

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩
|1⟩
|0⟩

|1⟩
|0⟩

VS.

ANSWER

I) From quantum computing to quantum chemistry



7

1

1

0

0
OR …

1
0
0
1

OR0
0

1
1

How to encode/manipulate information in Qubits vs. Bits

Classical STATE  
= 1 bitstring at the time 

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩
|1⟩
|0⟩

|1⟩
|0⟩

VS.

ANSWER

accessible 
Bitstrings  2N

I) From quantum computing to quantum chemistry



7

C0 +C1 +C2 …

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩ANDAND

1

1

0

0
OR …

1
0
0
1

OR0
0

1
1

How to encode/manipulate information in Qubits vs. Bits

Classical STATE  
= 1 bitstring at the time 

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩
|1⟩
|0⟩

|1⟩
|0⟩

VS.

ANSWER

accessible 
Bitstrings  2N

I) From quantum computing to quantum chemistry



7

C0 +C1 +C2 …

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩ANDAND

1

1

0

0
OR …

1
0
0
1

OR0
0

1
1

How to encode/manipulate information in Qubits vs. Bits

Classical STATE  
= 1 bitstring at the time 

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩

|1⟩
|0⟩
|1⟩
|0⟩

|1⟩
|0⟩

VS.

ANSWER

accessible 
Bitstrings  2N

simultaneously= 2N bistrings 

|ΨQubits⟩

I) From quantum computing to quantum chemistry



8
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Beyond Hartree-Fock: Full Configuration Interaction
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II) Electronic Structure on a Quantum Computer

-Richard P. Feynman 
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Today10−1
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Fault
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Soon?

Error correction  
threshold

NISQ algorithms

• Pretty resistant to the noise effects.

• Based on a few qubits and quantum gates.

• Exponentially fewer resources to store information



Quantum Circuit

Series of 
quantum gates
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Û( ⃗θ)
|1⟩
|0⟩

(…)
θ0

(…)
θ1

θ2

X

Z

|1⟩
|0⟩

|HF⟩

18

Energy  
measure

E( ⃗θ)

|Ψ( ⃗θ)⟩ = Û( ⃗θ) |HF⟩
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Û( ⃗θ)

III) Near Term Era: Variational Quantum Eigensolver



20

Hardware-efficient ansatz Kandala, Abhinav, et al. "Hardware-efficient variational quantum eigensolver for 
small molecules and quantum magnets." Nature 549.7671 (2017): 242-246.
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H
H

e−

e−

|1⟩
|0⟩
|1⟩
|0⟩
|1⟩
|0⟩
|1⟩
|0⟩α

β
α
β

1

2
( |0⟩ + |1⟩) ⊗ |Ψitinital⟩

A B C

|1⟩
|0⟩
|1⟩
|0⟩
|1⟩
|0⟩
|1⟩
|0⟩

|1⟩
|0⟩

=∑
k

e−iEkt |ψk⟩⟨ψk |

Measure



|0⟩ ⊗ |Ψitinital⟩

26

IV) Fault Tolerant Era: Quantum Phase Estimation

Ancillary 
Qubit H|1⟩

|0⟩

e−iĤt
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Announcement

PhD and Postdoc Opportunities coming soon in 2025 !!

HΨk = EkΨk

Contact us:  
syalouz@unistra.fr or yalouzsaad@gmail.com

Quantum Algorithm for Quantum Chemistry 

mailto:syalouz@unistra.fr
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II) Electronic structure on a Quantum Computer
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Electronic Structure Problem

II) From quantum computing to chemistry
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