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Classical bits 1 / 46
The basic component of classical information is the classical bit (binary digit) which can take the value 1
or 0, experimentally corresponding to the state of a transistor, a voltage, or a flux of photons in an optic
fiber.

Although the electronic components which create, store and manipulate classical bits rely on quantum
mechanics (first quantum revolution), the classical bit states are described by classical mechanics,
essentially because they involve a huge number of particles.

Information is stored as a succession of bits, encoding integer numbers and real numbers. For N bits:

n =
N−1
∑

i=0
ai2i

digitization
ÐÐÐÐÐ→ aN−1aN−2 . . . a1a0.

With N bits, one can encode 2N integer numbers (one at a time).
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QUESTION 1



Classical logical gates 3 / 46
A logic gate is an idealized or physical device implementing a Boolean function, a logical operation
performed on one or more binary inputs that produces a single binary output.
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Classical circuit: model of classical computation 4 / 46

Example: the half adder circuit



Toward Second Quantum Revolution



Moore’s law 5 / 46
The calculation power of a computer is related to the number of transistor in the processor, which has
been observed to double about every two years.
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The end of Moore’s law? 6 / 46

Transistors are reaching a size where quantum effects are not negligible anymore ! ∼ 2 nm

There might be different solutions: 3D stacking, new emergent technologies (post-silicon era), ...

But why not a change of paradigm ? Exploit the quantum effects instead of dealing with them !
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QUESTION 2



Quantum Mechanics

Postulates



Postulate 1a: Quantum state of a system 8 / 46

Associated to any isolated physical system is a complex vector space with inner product (Hilbert
space) known as the state space of the system. The system is completely described by its state
vector, which is a unit vector in the system’s state space.

Consider an orthonormal basis {∣ai⟩} for a N -dimensional state space. An arbitrary state vector in the
state space can be written as:

∣ψ⟩ =
N

∑

i=1
ai ∣ai⟩

We say that ∣ψ⟩ is a superposition of the states ∣ai⟩ with associated amplitude ai.
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Postulate 1a: Quantum state of a system 9 / 46

For a physical system, the associated state vector is normalized:

⟨ψ∣ψ⟩ = 1←→
N

∑

i=1
∣ai∣

2
= 1

The unit norm constraint does not completely determine ∣ψ⟩, as any state eiθ ∣ψ⟩ is also normalized.

States that differ by this global phase factor are said to be equivalent.

States that differ by a relative phase are distinct.

What about a composite system made up of two (or more) distinct physical systems ?
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Postulate 1b: Quantum state of composite systems 10 / 46

The state space of composite system is the tensor product of the state spaces of the component
physical systems A and B, i.e. H = HA ⊗HB .

For component physical systems A and B, prepared in the state ∣ψA⟩ and ∣ψB⟩, respectively, then the
joint state is a state of the total system:

∣ψ⟩ = ∣ψA⟩ ⊗ ∣ψB⟩ ≡ ∣ψA⟩ ∣ψB⟩ ≡ ∣ψAψB⟩ =

⎛

⎜
⎜
⎜
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a1
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⋮

aNA
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⎟
⎟
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⋮
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=
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NB

∑

j=1
aibj ∣ai⟩ ⊗ ∣bj⟩
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QUESTION 3



Postulate 1b: Quantum state of composite systems 12 / 46

Any state of H can be decomposed in the basis {∣µij⟩} formed by the tensor product of the basis of HA
and HB , i.e. ∣µij⟩ = ∣ai⟩ ⊗ ∣bj⟩ and

∣Ψ⟩ =
NA

∑

i=1

NB

∑

j=1
µij ∣µij⟩

µij=aibj

ÐÐÐÐÐ→ ∣ψ⟩ = ∣ψa⟩ ⊗ ∣ψb⟩

Examples of a composite system of two two-level component systems: QUESTION 4

∣Ψ1⟩ =
1
√

2
( ∣a1b2⟩ + ∣a2b1⟩ )

∣Ψ2⟩ =
1
2
( ∣a1b1⟩ + ∣a1b2⟩ + ∣a2b1⟩ + ∣a2b2⟩ ) =

1
2
( ∣a1⟩ + ∣a2⟩ ) ⊗ ( ∣b1⟩ + ∣b2⟩ ) = ∣ψ⟩

Entangled states are interesting because they exhibit correlations that have no classical analog .
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Postulate 2: Measurement of physical observable 13 / 46

Every measurable physical quantity M is described by a Hermitian operator M̂ acting on the
states of the state space H. This operator is an observable, and its eigenvectors form a basis
of H. The result of measuring a physical quantity M must be one of the eigenvalues of the
corresponding operator M̂.

Consider the spectral decomposition of M̂:

M̂ = ∑

m

mP̂m = ∑
m

m ∣m⟩ ⟨m∣

where P̂m is the projector onto the eigenspace of M̂ with eigenvalue m.

The possible outcomes of the measurement are the eigenvalues m of the observable.
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Postulate 2: Projective measurement on state ∣ψ⟩ 14 / 46
Consider a state ∣ψ⟩ ∈ H, which can always be written in the eigenbasis of M̂:

∣ψ⟩ = ∑
m

ψm ∣m⟩

The probability of getting the eigenvalue m upon measuring M̂ in the state ∣ψ⟩ is given by

pψ(m) = ⟨ψ∣ P̂m ∣ψ⟩ = ∣⟨ψ∣m⟩∣
2
= ∣ψm∣

2 (Born rule)

Given that outcome m occurred, ∣ψ⟩ collapses immediately to

∣ψ⟩ Ð→
P̂m ∣ψ⟩
√

pψ(m)
= ∣m⟩



Postulate 2: Projective measurement, expectation value 15 / 46
One can easily calculate average values for projective measurements,

Eψ(M̂) = ∑

m

mpψ(m)

= ∑

m

m ⟨ψ∣ P̂m ∣ψ⟩

= ⟨ψ∣ (∑
m

mP̂m) ∣ψ⟩

= ⟨ψ∣ M̂ ∣ψ⟩ ≡ ⟨M̂⟩ψ

It follows a formula for the standard deviation

∆ψM̂ =

√

⟨M̂
2
⟩ψ − ⟨M̂⟩

2
ψ

which is a measure of the typical spread of the observed values upon measurement of M̂.



Postulate 3: Time evolution of a system 16 / 46
The time evolution of the state vector ∣ψ(t)⟩ is governed by the Schrödinger equation, where
H(t) is the (time-dependent) Hamiltonian (observable associated with the total energy of the
system),

ih̵
d

dt
∣ψ(t)⟩ =H(t)∣ψ(t)⟩

or, equivalently:

The time evolution of a closed system is described by a unitary transformation on the initial
state,

∣ψ(t)⟩ = U(t; t0)∣ψ(t0)⟩

Operations are unitary to preserve the norm of the quantum state in time.
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Quantum Computation

Quantum Bit or Qubit



Quantum bit: a mathematical object 17 / 46
A quantum bit (qubit) is the basic component of quantum computers and is the simplest quantum
system: a two-level system.

Any state of the state space will be decomposed in the computational basis made out of two vectors
denoted ∣0⟩ and ∣1⟩ as follows

∣ψ⟩ = ψ0 ∣0⟩ + ψ1 ∣1⟩

with (ψ0, ψ1) ∈ C2 and ∣ψ0∣
2
+ ∣ψ1∣

2
= 1.

In contrast with a classical bit, the state can be something else than ∣0⟩ and ∣1⟩, it can be a superposition
of ∣0⟩ and ∣1⟩.

A qubit follows the law of quantum mechanics. It cannot be examined to determine its quantum state,
but its measurement outcome will be ∣0⟩ with probability ∣ψ0∣

2 or ∣1⟩ with probability ∣ψ1∣
2.
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Quantum corollary to Moore’s law: Quantum registers 18 / 46

1-qubit: ∣ψ⟩ = ψ0 ∣0⟩ + ψ1 ∣1⟩

2-qubit: ∣ψ⟩ = ψ0 ∣00⟩ + ψ1 ∣01⟩ + ψ2 ∣10⟩ + ψ3 ∣11⟩

3-qubit: ∣ψ⟩ = ψ0 ∣000⟩ + ψ1 ∣001⟩ + ψ2 ∣010⟩ + ψ3 ∣011⟩ψ4 ∣100⟩ + ψ5 ∣101⟩ + ψ8 ∣110⟩ + ψ7 ∣111⟩

4-qubit: ∣ψ⟩ = ψ0 ∣0000⟩ + ψ1 ∣0001⟩ + ψ2 ∣0010⟩ + ψ3 ∣0011⟩ψ4 ∣0100⟩ + ψ5 ∣0101⟩ + ψ8 ∣0110⟩ + ψ7 ∣0111⟩
+ψ8 ∣1000⟩+ψ9 ∣1001⟩+ψ10 ∣1010⟩+ψ11 ∣1011⟩ψ12 ∣1100⟩+ψ13 ∣1101⟩+ψ14 ∣1110⟩+ψ15 ∣1111⟩

The number of binary strings that are encoded on the qubit register doubles for every additional qubit.

That’s the Quantum corollary to Moore’s law

Not performing any measurements, Nature conceals a great deal of hidden quantum information, which
grows exponentially with the number of qubits (N = 500 > natoms in the universe !).
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grows exponentially with the number of qubits (N = 500 > natoms in the universe !).



Quantum Computation

Quantum gates



Single-qubit gates: Bloch Sphere representation 19 / 46
Because (ψ0, ψ1) ∈ C2 and ∣ψ0∣

2
+ ∣ψ1∣

2
= 1, one can rewrite the qubit state as follows:

∣ψ⟩ = eiγ (cos θ
2
∣0⟩ + eiφ sin θ

2
∣1⟩) Ð→ ∣ψ⟩ = cos θ

2
∣0⟩ + eiφ sin θ

2
∣1⟩



Single-qubit gates: Pauli matrices 20 / 46
Any unitary operation Û on a single qubit might be seen as a rotation on the Bloch sphere. It
corresponds to a 2 × 2 matrix which can be expressed as a function of four basis operators.

A commonly used basis consists in Pauli’s matrices:

I = (1 0
0 1) , σ1 = (

0 1
1 0) , σ2 = (

0 −i
i 0 ) , σ3 = (

1 0
0 −1)

Alternative notations:

Î = (
1 0
0 1) , X̂ = (

0 1
1 0) , Ŷ = (

0 −i
i 0 ) , Ẑ = (

1 0
0 −1)

Properties: X̂2
= Ŷ 2

= Ẑ2
= Î and σiσj = iεijkσk + δijI
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Single-qubit gates: Pauli generators for rotations 21 / 46
Any rotation around the direction n⃗ = (nx, ny, nz) (∣n⃗∣ = 1) can be expressed as the exponential matrix
of a superposition of Pauli’s matrices, with ˆ⃗σ = (X̂, Ŷ , Ẑ),

ei
θ
2 (n⃗⋅ˆ⃗σ) =

∞
∑

k=0

ik ( θ2 n⃗ ⋅
ˆ⃗σ)
k

k!

=

∞
∑

p=0

(−1)p ( θ2 n⃗ ⋅ ˆ⃗σ)
2p

(2p)!
+ i

∞
∑

q=0

(−1)q ( θ2 n⃗ ⋅ ˆ⃗σ)
2q+1

(2q + 1)!

= I
∞
∑

p=0

(−1)p ( θ2)
2p

(2p)!
+ i (n⃗ ⋅ ˆ⃗σ)

∞
∑

q=0

(−1)q ( θ2)
2q+1

(2q + 1)!

= cos θ
2
I + i sin θ

2
(nxX̂ + nyŶ + nzẐ) = Rn⃗(θ)



Single-qubit gates 22 / 46

X̂ = (

∣0⟩ ∣1⟩
∣0⟩ 0 1
∣1⟩ 1 0 ), Ẑ = (

∣0⟩ ∣1⟩
∣0⟩ 1 0
∣1⟩ 0 −1), Ĥ =

1
√

2
(

∣0⟩ ∣1⟩
∣0⟩ 1 1
∣1⟩ 1 −1), T̂ = (

∣0⟩ ∣1⟩
∣0⟩ 1 0
∣1⟩ 0 eiπ/4 ),

Alternatively:

X̂ = ∣1⟩ ⟨0∣ + ∣0⟩ ⟨1∣ , Ẑ = ∣0⟩ ⟨0∣ − ∣1⟩ ⟨1∣ , Ĥ =
∣0⟩ + ∣1⟩
√

2
⟨0∣ + ∣0⟩ − ∣1⟩√

2
⟨1∣ , T̂ = ∣0⟩ ⟨0∣ + eiπ/4 ∣1⟩ ⟨1∣

Circuit representation:
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QUESTION 5



Controlled multi-qubit gate C-U 24 / 46

Single-qubit gates cannot create entanglement, one requires multi-qubit gates.

Consider a register of N qubits, where a quantum operation Û is applied to the last (N − 1) qubits,
controlled by the first qubit.

This gate is called a singly-controlled multi-qubit gate (can be easily generalized to a multi-controlled
multi-qubit gate) and is given by

C-U = (1 0
0 0) ⊗ I⊗

N−1
+ (

0 0
0 1) ⊗ Û

such that Û is only applied if the first qubit is in state ∣1⟩.
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Two-qubit gates 25 / 46

C-NOT =
⎛

⎜
⎜
⎜

⎝

∣00⟩ ∣01⟩ ∣10⟩ ∣11⟩
∣00⟩ 1 0 0 0
∣01⟩ 0 1 0 0
∣10⟩ 0 0 0 1
∣11⟩ 0 0 1 0

⎞

⎟
⎟
⎟

⎠

, SWAP =
⎛

⎜
⎜
⎜

⎝

∣00⟩ ∣01⟩ ∣10⟩ ∣11⟩
∣00⟩ 1 0 0 0
∣01⟩ 0 0 1 0
∣10⟩ 0 1 0 0
∣11⟩ 0 0 0 1

⎞

⎟
⎟
⎟

⎠

Alternatively:
ˆC-NOT = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ + ∣11⟩ ⟨10∣ + ∣10⟩ ⟨11∣ , ˆSWAP = ∣00⟩ ⟨00∣ + ∣10⟩ ⟨01∣ + ∣01⟩ ⟨10∣ + ∣11⟩ ⟨11∣

X

X



Two-qubit gates 25 / 46

C-NOT =
⎛

⎜
⎜
⎜

⎝

∣00⟩ ∣01⟩ ∣10⟩ ∣11⟩
∣00⟩ 1 0 0 0
∣01⟩ 0 1 0 0
∣10⟩ 0 0 0 1
∣11⟩ 0 0 1 0

⎞

⎟
⎟
⎟

⎠

, SWAP =
⎛

⎜
⎜
⎜

⎝

∣00⟩ ∣01⟩ ∣10⟩ ∣11⟩
∣00⟩ 1 0 0 0
∣01⟩ 0 0 1 0
∣10⟩ 0 1 0 0
∣11⟩ 0 0 0 1

⎞

⎟
⎟
⎟

⎠

Alternatively:
ˆC-NOT = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ + ∣11⟩ ⟨10∣ + ∣10⟩ ⟨11∣ , ˆSWAP = ∣00⟩ ⟨00∣ + ∣10⟩ ⟨01∣ + ∣01⟩ ⟨10∣ + ∣11⟩ ⟨11∣

X

X



Two-qubit gates 25 / 46

C-NOT =
⎛

⎜
⎜
⎜

⎝

∣00⟩ ∣01⟩ ∣10⟩ ∣11⟩
∣00⟩ 1 0 0 0
∣01⟩ 0 1 0 0
∣10⟩ 0 0 0 1
∣11⟩ 0 0 1 0

⎞

⎟
⎟
⎟

⎠

, SWAP =
⎛

⎜
⎜
⎜

⎝

∣00⟩ ∣01⟩ ∣10⟩ ∣11⟩
∣00⟩ 1 0 0 0
∣01⟩ 0 0 1 0
∣10⟩ 0 1 0 0
∣11⟩ 0 0 0 1

⎞

⎟
⎟
⎟

⎠

Alternatively:
ˆC-NOT = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ + ∣11⟩ ⟨10∣ + ∣10⟩ ⟨11∣ , ˆSWAP = ∣00⟩ ⟨00∣ + ∣10⟩ ⟨01∣ + ∣01⟩ ⟨10∣ + ∣11⟩ ⟨11∣

X

X



Toffoli gate 26 / 46

The Toffoli gate is a multi-controlled 3-qubit gate (controlled-controlled NOT gate), which was originally
devised as a universal, reversible classical logic gate by Toffoli.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

∣000⟩ ∣001⟩ ∣010⟩ ∣011⟩ ∣100⟩ ∣101⟩ ∣110⟩ ∣111⟩
∣000⟩ 1 0 0 0 0 0 0 0
∣001⟩ 0 1 0 0 0 0 0 0
∣010⟩ 0 0 1 0 0 0 0 0
∣011⟩ 0 0 0 1 0 0 0 0
∣100⟩ 0 0 0 0 1 0 0 0
∣101⟩ 0 0 0 0 0 1 0 0
∣110⟩ 0 0 0 0 0 0 0 1
∣111⟩ 0 0 0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠



Quantum Computation

Quantum Circuit



Quantum circuit: model of quantum computation 27 / 46
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Example 1: Bell states 28 / 46
Bell states, also called EPR states or EPR pairs, are:

∣00⟩ ± ∣11⟩
√

2
,

∣01⟩ ± ∣10⟩
√

2

They can be prepared with an Hadamard gate and a CNOT gate:

∣00⟩ H1
Ð→

1
√

2
(∣00⟩ + ∣10⟩) CNOT12

ÐÐÐÐÐ→

1
√

2
(∣00⟩ + ∣11⟩)
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Einstein, Podolski and Rosen (EPR, 1935) 29 / 46
Quantum mechanics:

1. An unobserved particle does no possess physical properties that exist independent of observation.
Rather, such physical properties arise as a consequence of measurements performed upon the
system.

2. For an entangled state of a composite system of A and B, the action performed on system A will
modify the description of system B.

EPR wanted to show that any complete physical theory should fulfill the sufficient condition that a value
of a physical property can be predicted with certainty immediately before measurement.

Hence, quantum mechanics is incomplete and one is missing a local hidden variable, according to their
assumption of local realism.
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Bell’s inequality (1964) 30 / 46
Bell thought about an experiment that has different outcome if analyzed by our common sense notions
of the world, or by quantum mechanics. Charlie prepares two particles, send one to Alice and one to Bob
which perform measurements simultaneously (physical influences cannot propagate faster than light!).

Alice Bob
Faaaar faaaaaaar awayyyyyy

Bell inequality:
E(QS) +E(RS) +E(RT ) −E(QT ) ≤ 2

And if Charlie prepares two entangled qubits ?
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Bell’s inequality (1964) 31 / 46
If Charlie prepares two entangled qubits in the state ∣ψ⟩ = ∣01⟩ − ∣10⟩

2
, and that

Q = Z1,R =X1, S =
−Z2 −X2
√

2
, T =

Z2 −X2
√

2

we have

⟨Q⊗ S⟩ψ = ⟨R⊗ S⟩ψ = ⟨R⊗ T ⟩ψ = −⟨Q⊗ T ⟩ψ =
1
√

2
such that

⟨QS⟩ψ + ⟨RS⟩ψ + ⟨RT ⟩ψ − ⟨QT ⟩ψ = 2
√

2 > 2.
Hence, the fact that two spatially separate particles can form an unseparable system violates Bell
inequality .

And indeed, Bell inequality (1964) are not obeyed by Nature (Alain Aspect experiment, 1982).
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Example: Quantum teleportation 32 / 46

Alice and Bob have one qubit each. While together, they generated an EPR pair ∣00⟩ + ∣11⟩
√

2
, but they are

now separated. Many years later, Bob is hiding and Alice has a mission: deliver a qubit ∣ψ⟩ to Bob...

But:
1. Alice doesn’t know the state of the qubit, ∣ψ⟩ = α ∣0⟩ + β ∣1⟩
2. She cannot look at it or it will collapse...
3. She can only communicate with Bob once...

Fortunately, their EPR pair can be used to send ∣ψ⟩ to Bob ! (Experiment by Bennett et al., 1993)
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∣ψ0⟩ =
1
√

2
(α ∣0⟩ (∣00⟩ + ∣11⟩) + β ∣1⟩ (∣00⟩ + ∣11⟩) )
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∣ψ1⟩ =
1
√

2
(α ∣0⟩ (∣00⟩ + ∣11⟩) + β ∣1⟩ (∣10⟩ + ∣01⟩) )



Example: Quantum teleportation 33 / 46

∣ψ2⟩ =
1
2
(α (∣0⟩ + ∣1⟩) (∣00⟩ + ∣11⟩) + β (∣0⟩ − ∣1⟩) (∣10⟩ + ∣01⟩) )

=

1
2
( ∣00⟩ (α ∣0⟩ + β ∣1⟩) + ∣01⟩ (α ∣1⟩ + β ∣0⟩) + ∣10⟩ (α ∣0⟩ − β ∣1⟩) + ∣11⟩ (α ∣1⟩ − β ∣0⟩) )



Example: Quantum teleportation 33 / 46

00Ð→ ∣ψ3(00)⟩ = α ∣0⟩ + β ∣1⟩
01Ð→ ∣ψ3(01)⟩ = α ∣1⟩ + β ∣0⟩
10Ð→ ∣ψ3(10)⟩ = α ∣0⟩ − β ∣1⟩
11Ð→ ∣ψ3(11)⟩ = α ∣1⟩ − β ∣0⟩



Example: Quantum teleportation 34 / 46

Only the information about the quantum state and not the state itself (no matter or energy) passes from
Alice to Bob.

The teleportation is not faster than light, as Alice has to pass the information to Bob by a classical
channel.



Classical versus Quantum
QUESTION 6



Irreversibility versus Reversibility 35 / 46
Quantum gates are unitary , and hence reversible.

Classical logical gates are not all reversible, but any irreversible classical algorithm can be transformed
into a reversible algorithm at the expense of having a higher volume of information and the introduction
of the Toffoli gate.

Toffoli gate is a universal reversible gate for classical computing. As it is reversible, it has a quantum
analog, and any classical algorithm has a quantum analog as well.

Example of the half-adder circuit:
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‘Universal’ refers to the fact that any gate can be implemented by using only successions of
these gates.

Classical computing: NAND or NOR or Toffoli are universal gates.

Quantum computing: Beyond Clifford gate set (CNOT + S + H)
1. Toffoli + H

2. CNOT, H and T
3. Clifford + T gates (S = T 2)

Note: quantum algorithms that is written with Clifford gates can be simulated efficiently on classical
computers (Gottesman-Knill theorem)

Non-Clifford relative phase gates are very important !
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Making copy?
QUESTION 7



No cloning theorem 38 / 46
Copies are everywhere in the classical world, they are one of the most powerful means of spreading
and preserving information.

Can we make a copy of an unknown quantum state ?

Suppose the procedure works for two particular pure states ∣ψ⟩ and ∣φ⟩, thus

U(∣ψ⟩ ⊗ ∣s⟩) = ∣ψ⟩ ⊗ ∣ψ⟩ , U(∣φ⟩ ⊗ ∣s⟩) = ∣φ⟩ ⊗ ∣φ⟩

The inner product of the two states give ⟨ψ∣φ⟩ = (⟨ψ∣φ⟩)2 Ð→ ∣ψ⟩ and ∣φ⟩ are either equal or orthogonal.

Hence, a general quantum cloning device is impossible.



No cloning theorem 38 / 46
Copies are everywhere in the classical world, they are one of the most powerful means of spreading
and preserving information.

Can we make a copy of an unknown quantum state ?

Suppose the procedure works for two particular pure states ∣ψ⟩ and ∣φ⟩, thus

U(∣ψ⟩ ⊗ ∣s⟩) = ∣ψ⟩ ⊗ ∣ψ⟩ , U(∣φ⟩ ⊗ ∣s⟩) = ∣φ⟩ ⊗ ∣φ⟩

The inner product of the two states give ⟨ψ∣φ⟩ = (⟨ψ∣φ⟩)2 Ð→ ∣ψ⟩ and ∣φ⟩ are either equal or orthogonal.

Hence, a general quantum cloning device is impossible.
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QUESTION 8
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▸ The Fault-tolerant era is the era of error corrected (logical) qubits.

▸ Quantum components are inevitably noisy in any Quantum era ! NISQ and Fault-tolerant.

▸ Can we use noisy (physical) qubits to simulate an error-free computation ?

YES !
↓

Threshold Theorem
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▸ Theorem: a quantum computer with a physical error rate below a certain threshold can, through
application of quantum error correction schemes, suppress the logical error rate to arbitrarily
low levels

▸ Requirements: each error correction circuit will reduce the error probability from p to cp2
< p, for

some constant c

▸ We can increase the gain we get from one round of error correction (p→ cp2) by concatenation
of codes

level 0 level 1 level 2 ⋯ level k
p → cp2

→ c(cp2
)

2
⋯ → c−1

(cp2
)
k



Quantum Error Correction (Encoding and Transversality) 41 / 46
▸ Core idea of QEC → redundant qubits which correlation tells us something about noise

Single logical-qubit gate

XL ∣ψ⟩ =X1 ⊗X2 ⊗X3 ∣ψ⟩ = α ∣1⟩L + β ∣0⟩L
ZL ∣ψ⟩ = Z1 ⊗Z2 ⊗Z3 ∣ψ⟩ = α ∣0⟩L − β ∣1⟩L

Transversality (CNOT)



Example: Bitflip error correction code (level 1)1 42 / 46

1QCPC2023, David Herrera Martí and Zach Blunden-Codd
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Correction to arbitrary precision: Concatenation 43 / 46
level 0 level 1 level 2 ⋯ level k
p → cp2

→ c(cp2
)

2
⋯ → c−1

(cp2
)
k



Universal Fault-tolerance 44 / 46
▸ Is that all ? Let’s just use transversability to apply any operations between our logical qubits !

▸ Universal Quantum Computing = Universal set of gates (Clifford (S, H, CNOT) + T gates)

▸ Eastin-Knill (no-go) theorem2: no quantum error correcting code can transversely implement a
universal gate set

SOLUTIONS ?
↓

Magic State Distillation or T-state distillation factories
Requires many many ⋯ many physical qubits and operations3

2B. Eastin, E. Knill, PRL 102 (11), 110502 (2009)
3J. O’Gorman and E. T. Campbell, PRA 95, 032338 (2017) ; C. Gidney and A. G. Fowler, Quantum 3, 135 (2019)



Take Home Messages



Take Home messages 46 / 46
Quantum computing differs from classical computing due to:
▸ Superposition
▸ Entanglement
▸ Measurement (collapse)
▸ No-cloning
▸ Reversibility (unitary operations)

Other important information:
▸ Any Clifford circuit is classically simulatable
▸ No QEC can act transversely on physical qubits (Eastin-Knill no-go theorem)

Developing efficient quantum algorithms for practical relevant (industrial or societal) tasks is not trivial,
as it requires a radical change of vision of computing.



Enjoy the tutorials!
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