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Introductive quantum circuit
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Introductive quantum circuit

The measurement gives an estimation of 
the phase, here the ground state energy:
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Introductive quantum circuit

The measurement gives an estimation of 
the phase, here the ground state energy:

Two challenges:

1. Preparing the ground state of H

2. Implementing the unitary evolution 
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Mapping chemistry to qubits - 2nd quantisation & Jordan-Wigner

 Electronic hamiltonian

 Hamiltonian discretisation : 
2nd quantisation

Wavefunctions antisymmetric  under particle exchange  = fermionic operators satisfy 
anticommutation relations.
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Mapping chemistry to qubits - Occupation basis & Jordan-Wigner

 Mapping fermions to qubits  & excitation operators to quantum circuits

Occupation basis  : each qubit stores the occupation  of a spin orbital

Jordan-Wigner tranform

Hartree-Fock state
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Quantum chemistry : electronic wavefunction

⚠ Number of Configuration State Functions grow 
exponentially  with system size

💡 Quantum computer  stores the exponentially 
increasing wave-function with a linear number of qubits

Full-Configuration-Interaction (FCI) wavefunction
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Quantum algorithms for quantum chemistry

The Quantum Phase Estimation algorithm

The original QPE algorithm

1. Initialisation : 

2. Projection : ctrl-exp( i Ht) and QFT ⁺

3. Final state : 

Where |bin( φᵢ)⟩ is a binary estimate of the i-th 
eigenvalue

→ Ground state projection with success probability = | α₀|²
→ Algorithm complexity dominated by ctrl-exp( i Ht)
     polynomial assuming efficient initialisation, i. e. exponential advantage  over exact 
diagonalisation
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Quantum algorithms for quantum chemistry

The initial state, spectral decomposition:

Success probability for ground state:

The initial state should be :

1. A good approximation of the Hamiltonian ground state 

2. Implemented in the quantum device with a compact circuit
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Quantum algorithms for quantum chemistry

● The Hamiltonian evolution operator should be efficiently implemented,

as it dominates the overall algorithm complexity

● Brute force Jordan-Wigner and first order Trotter : 

the operation can be implemented with a depth of O(N⁴)

Multiple Hamiltonian evolution operator

ctrl -
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Quantum algorithms for quantum chemistry - VQE

VQE relies on the variational principle:

             is a parameterised quantum state (ansatz) 
is the lowest eigenvalue: the ground-state energy. 

This implies we can approximate the ground-state 
wavefunction and its energy  by computing: 
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Challenge: Ansatz trainability, expressivity and circuit depth

Ansatz 1
Low expressivity
High trainability

Ansatz 2
High expressivity
Low trainability

Mixed landscapes, easy to train

Mixed landscapes, easy to train

Flat landscapes, hard to train
Large variational space

Small variational space

Quantum algorithms for quantum chemistry - VQE
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Limitations :

● Noisy optimisation of a multi-dimensional non-convex cost function, with limited energy evaluations.

● Convergence to very accurate energy (chemical accuracy) is uncertain, it needs an ansatz of 

(i) high trainability, (ii) high expressivity, and (iii) a compact quantum circuit.

● Quantum resource estimates are pessimistic about having an advantage with VQE in chemistry.

But :

● Quantum state preparation for QPE is less critical, as it only needs to prepare a state having a 

non-zero overlap  with the ground state.

● VQE could provide an accurate parameterised quantum state as initial state for QPE

Quantum algorithms for quantum chemistry - VQE
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Quantum algorithms for quantum chemistry - VQE

Typical Hardware-efficient ansatz : trainability issues
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Quantum algorithms for quantum chemistry
ADAPT-VQE : compact and accurate ansatze
Grimsley, Economou, Barnes, Mayhall, Nature Communications 10, 3007 (2019)
Slide taken from talk : UCLA, Sophia Economou, Adaptive quantum simulation algorithms
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Quantum algorithms for quantum chemistry

ADAPT-VQE : compact and accurate ansatze
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Quantum algorithms for quantum chemistry

But sometimes face energy plateaus issues 
Local minima & barren plateaus

Unwise addition of operators is a problem:
- Overparameterised  ansatz
- Increase the circuit depth
- No energy improvements
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Overlap-
ADAPT-VQ
E

02
Variational state preparation
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Introductive quantum circuit
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Introductive quantum circuit
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Introductive quantum circuit
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Introductive quantum circuit
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Introductive quantum circuit
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Grows the ansatz by maximizing its overlap  with any intermediate target wave-function 
that captures some electronic correlation.

Inputs : 
1. Target/reference wave-function
2. Pool of operators
3. Initial state

Procedure : 
ADAPT-VQE with a projector on the 
target state as hamiltonian: 

Feniou, Hassan, Giner, Maday, Piquemal, Communications Physics 6, 192 (2023)

Overlap-ADAPT-VQE
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Feniou, Hassan, Giner, Maday, Piquemal, Communications Physics 6, 192 (2023)

Overlap-ADAPT-VQE
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Overlap-ADAPT-VQE

Example target wavefunction : ADAPT-VQE ansatz stuck in an energy plateau

The Overlap-ADAPT-VQE ansatz achieves higher accuracy  and/or shorter circuits
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Overlap-ADAPT-VQE

Example target wavefunction : Classical CIPSI wave-function

Initialising the ansatz with a CIPSI-Overlap-ADAPT-VQE procedure drives the ADAPT-VQE to 
chemical accuracy with 40 parameters  instead of over 150 .
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📝 The overlap  between initial state  and ground state  drives the 
success  probability in QPE.

⚠  For strongly correlated systems , the overlap between 
Hartree-Fock state and ground state vanishes (orthogonality 
catastrophe)

💡 Taking classically-derived  correlated wavefunction as initial 
states would enhance the ground state support

Strategy: Quantum state preparation of CI wave-function 

Fomichev, Stepan, et al. arXiv:2310.18410 (2023).

Feniou, C., Adjoua, O., Claudon, B., Zylberman, J., Giner, E., & Piquemal, J. P. (2024). Sparse quantum state 
preparation for strongly correlated systems. The Journal of Physical Chemistry Letters, 15(11), 3197-3205.

Overlap-ADAPT-VQE : QPE initialisation
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Selected-CI wave function, is mapped as a sparse quantum state in the computational basis 
(particle-, spin-symmetries).

Overlap-ADAPT-VQE : QPE initialisation
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Selected-CI wave function, is mapped as a sparse quantum state in the computational basis 
(particle-, spin-symmetries).

Overlap-ADAPT-VQE : QPE initialisation

Quantum State Preparation can be achieved by direct loading of expansion coefficients  at the 
corresponding determinants/computational basis vectors, or with a variational algorithm.  

Direct loading  : loading M determinants in a 
n-qubit space has a circuit depth complexity in 
                with CVO-QRAM* 

*de Veras, T. M. L.; da Silva, L. D.; da Silva, A. J. Double sparse quantum 
state preparation. Quantum Information Processing 2022, 21, 204

Variational algorithm  : approaching the 
target state with parameterised unitary 
rotations, with Overlap-ADAPT-VQE, 
undeterministic success
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- 28-qubit simulation on GPU-accelerated emulator

- Overlap-ADAPT-VQE yields much smaller circuits than CVO-QRAM for any target fidelity

- With ~100 iterations, it reaches the fidelity of a 10k determinants CI wavefunction

Feniou, C., Adjoua, O., Claudon, B., Zylberman, J., Giner, E., & Piquemal, J. P. (2024). Sparse quantum state 
preparation for strongly correlated systems. The Journal of Physical Chemistry Letters, 15(11), 3197-3205.

Overlap-ADAPT-VQE : QPE initialisation
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What can we conclude from this? 

- It is likely large CI wave-functions could be encoded as compact Ansatze  in the quantum 

device, the Overlap-ADAPT-VQE algorithm can achieve  such encoding

- However, it here needs to classically simulate the whole quantum circuit: NOT SCALABLE

How to scale this process to the 100-qubit regime and beyond ?

- Approximate  quantum circuit simulation with MPS

- Loading CI wavefunction  with CVO-QRAM, then compacting with Overlap-ADAPT-VQE

Overlap-ADAPT-VQE : QPE initialisation
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Oracle 
decomposition 

            Multi-control NOT gate 

03
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- All FTQC quantum algorithms rely on oracles (Black-box unitary operations)

- The algorithm complexity is expressed as ‘number of calls to the oracle’

- Can these black-box oracles be efficiently decomposed into usual quantum gates?

Typical QPE oracles for Hamiltonian evolution operator Multi-control-U gate used in CVO-QRAM

Refining oracle decomposition as quantum circuit
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Claudon, B., Zylberman, J., Feniou, C. et al. Polylogarithmic-depth controlled-NOT gates without ancilla 
qubits. Nat Commun 15, 5886 (2024). 

- Multi-control operations are building blocks of countless quantum algorithms

- State-of-the-art decompositions scale linearly with the number of controls

- We proposed a polylogarithmic decomposition

Refining oracle decomposition as quantum circuit

Polylog-depth decomposition of multi-control NOT gates
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Parallelised Cp(X) gates => Depth O(√n)

Refining oracle decomposition as quantum circuit
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Parallelised Cp(X) gates => Depth O(√n)

5 layers of depth O(√n) involving C√n(X) 

gates (already a quadratic advantage)

Each layer could be cut down  

But here need zeroed ancilla qubits…

Refining oracle decomposition as quantum circuit
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Ancilla restored (borrowed)

Add a few layers to transform the zeroed-ancilla to a borrowed, then divide-and-conquer as 
there are enough borrowable ancilla qubits on each Cp(X) layer   =>

Refining oracle decomposition as quantum circuit
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The original QPE algorithm

Conclusion and perspectives
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Quantum computational chemistry
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